
Analyzing the Sensitivity of Prompt Engineering Techniques in
Natural Language Interfaces for 2.5D Software Visualization

Daniel Atzberger

daniel.atzberger@hpi.de

Hasso Plattner Institute

Digital Engineering Faculty

University of Potsdam

Potsdam, Brandenburg, Germany

Adrian Jobst

adrian.jobst@hpi.de

Hasso Plattner Institute

Digital Engineering Faculty

University of Potsdam

Potsdam, Brandenburg, Germany

Mariia Tytarenko

m.Tytarenko@cgv.tugraz.at

Graz University of Technology

Graz, Styria, Austria

Willy Scheibel

willy.scheibel@hpi.de

Hasso Plattner Institute

Digital Engineering Faculty

University of Potsdam

Potsdam, Brandenburg, Germany

Jürgen Döllner

juergen.doellner@hpi.de

Hasso Plattner Institute

Digital Engineering Faculty

University of Potsdam

Potsdam, Brandenburg, Germany

Tobias Schreck

tobias.schreck@cgv.tugraz.at

Graz University of Technology

Graz, Styria, Austria

Abstract
Natural Language Interfaces (NLIs) backed by Large Language Mod-

els (LLMs) are used to interact with visualizations through natural

language queries. Using the specific example of 2.5D treemaps, the

Delphi tool was recently presented, introducing an interactive 2.5D

visualization with an accompanying chat interface, where the LLM

can react to user input and adapt the visualization at its own dis-

cretion. While Delphi has demonstrated effectiveness, the authors

have not included an evaluation of the LLM’s performance with

respect to its prompt and specific task types. In this study, we sys-

tematically evaluate the impact of prompt engineering on Delphi’s

ability to answer factual questions related to data and visualiza-

tion. Specifically, we investigate the effect of the Chain-of-Thought

prompting technique by employing a questionnaire comprising 40

questions across ten low-level analytic tasks. Our findings aim to

refine prompt design methodologies and enhance the usability and

effectiveness of NLIs in advanced visualization systems.

CCS Concepts
•Human-centered computing→Natural language interfaces;
Information visualization; Visualization techniques; Empirical

studies in visualization.

Keywords
Natural Language Interfaces, Chart Question Answering, Prompt

Sensitivity, Chain-of-Thought Technique

ACM Reference Format:
Daniel Atzberger, Adrian Jobst, Mariia Tytarenko, Willy Scheibel, Jürgen

Döllner, and Tobias Schreck. 2025. Analyzing the Sensitivity of Prompt

Engineering Techniques in Natural Language Interfaces for 2.5D Software

Visualization. In Companion Proceedings of the ACM Web Conference 2025

This work is licensed under a Creative Commons Attribution 4.0 International License.

WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1331-6/2025/04

https://doi.org/10.1145/3701716.3717813

(WWW Companion ’25), April 28-May 2, 2025, Sydney, NSW, Australia. ACM,

New York, NY, USA, 5 pages. https://doi.org/10.1145/3701716.3717813

1 Introduction
Software visualizations represent software artifacts using geomet-

ric artifacts to support stakeholders in program comprehension

tasks [8]. Among these visualizations, treemaps are a popular visu-

alization technique, leveraging layouts that reflect the hierarchical

structure of files within a software project and visual variables to

convey aspects related to complexity and quality [17]. Extending

traditional 2D treemaps using 3D cuboids enhances their expres-

sive power by introducing additional visual variables and providing

greater flexibility for stakeholders during visual exploration [12].

However, fully utilizing the potential of these 2.5D treemaps re-

quires users to understand both the visualization and the domain.

To assist users in their exploration process, Jobst et al. intro-

duced Delphi, an NLI extension for 2.5D treemaps, as shown in

Figure 1 [10]
1
. Delphi enables users to ask questions about the

visualization through a Natural Language Interface (NLI), which
are processed by an underlying Large Language Model (LLM). The

LLM generates responses displayed to the user within the NLI and

might initiate adjustments to the visual mapping. The prototype

can be accessed via https://hpicgs.github.io/llm-treemaps/.

Delphi requires the visualization designer to write an instruc-

tion prompt, i.e., a textual description of the tasks and context.

While Jobst et al. demonstrated Delphi’s effectiveness using a fixed

prompt, LLMs are known to be highly sensitive to prompt vari-

ations [3, 18, 26], and tailored prompting techniques can signifi-

cantly enhance performance [14, 24]. In this study, we conduct a

sensitivity analysis of Delphi’s instruction prompt, focusing on its

ability to answer factual questions about the data and visualiza-

tion. Specifically, we examine the impact of the Chain-of-Thought
prompting technique, which encourages step-by-step reasoning

in LLM responses [23]. To evaluate this, we propose a question-

naire comprising 40 questions spanning ten low-level analytics

1
author’s version:

https://drive.google.com/file/d/18rIDAQiBx_gw7SQYkV7aR5bCywNiKMrf/view?usp=sharing

1591

https://orcid.org/0000-0002-5409-7843
https://orcid.org/0009-0007-4894-451X
https://orcid.org/0009-0001-6925-272X
https://orcid.org/0000-0002-7885-9857
https://orcid.org/0000-0002-8981-8583
https://orcid.org/0000-0003-0778-8665
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3701716.3717813
https://doi.org/10.1145/3701716.3717813
https://hpicgs.github.io/llm-treemaps/
https://drive.google.com/file/d/18rIDAQiBx_gw7SQYkV7aR5bCywNiKMrf/view?usp=sharing
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3701716.3717813&domain=pdf&date_stamp=2025-05-23

WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Daniel Atzberger et al.

Figure 1: Illustration of Delphi. (Right) A 2.5D treemap visualizing the webgl-operate (https://github.com/cginternals/webgl-
operate) project from GitHub, a TypeScript-based WebGL rendering framework. The height of each cuboid represents the
number of functions in a file, and color indicates comment density. The five largest files by lines of code are highlighted. (Left)
The NLI interface displays the textual interaction between the user and the system, where the user queries the LLM to highlight
the five largest files.

tasks, each requiring an understanding of visual mappings and data

column semantics.

2 Related Work
Shen et al. define NLIs as systems that “interpret a user’s natural lan-

guage queries as input and output appropriate visualizations” [19].

In this section, we review related work that aligns with this def-

inition, with a particular emphasis on systems leveraging LLMs.

Additionally, we discuss existing studies that examine the sensitiv-

ity of prompts and their impact on system performance.

2.1 Natural Language Interfaces
Shen et al.’s definition of NLIs includes not only components em-

bedded within a user interface (UI), but also methods that generate

visualizations from natural language inputs and Chart Question-
Answering (CQA) systems, i.e., techniques that “take a chart and a

natural language question as input and automatically generate the

answer to facilitate visual data analysis” [9]. Choe et al. developed

a system, that is conceptually comparable to Delphi, designed to

support visualization novices in learning visualization techniques

by enabling modifications. In both cases the visualizations are pre-

designed by a visualization expert and the underlying LLM might

adapt to the user’s question [5].

Since LLMs can generate source code based on natural language

specifications, by integrating libraries such as matplotlib, they can

also create visualizations without a pre-given design [4, 21]. How-

ever, studies have highlighted weaknesses in these visualizations,

including deviations from established design guidelines [22]. An

alternative approach is to divide the visualization generation pro-

cess into multiple sub-steps. For example, LIDA first generates a

summary of the given dataset, proposes a list of potential questions,

and then produces the source code for graphical representations

based on these questions [7]. Similar pipeline-based approaches

have been proposed by Tian et al. [20] and Cui et al [6].

Previous research on the use of LLMs for visualizations has

largely overlooked the impact of prompt design on the outcomes.

The generation of prompts has typically relied on experimental

trial-and-error approaches, thus lacking a systematic evaluation

framework. In this study, we address this gap by systematically

examining the influence of various prompt engineering techniques

on the results. Our goal is to propose a generalizable framework

for evaluating and improving prompt effectiveness in the context

of visualization tasks.

2.2 Prompt Sensitivity Analysis
LLMs excel in natural language understanding and generation but

exhibit high sensitivity to their input prompts. Sclar et al. demon-

strated that prompt formatting significantly affects LLM perfor-

mance in downstream tasks, with this influence varying across

models [18]. To enable fair comparisons, they developed an evalua-

tion framework that systematically explores and assesses different

prompt formats. Similar frameworks have been employed by Zhuo

et al.[26] and Chatterjee et al.[3]. Another strategy for improv-

ing output quality involves employing dedicated prompt engineer-

ing techniques. For example, Lu et al. showed that example-based

prompts allow LLMs to outperform specialized fine-tuned models,

even without additional fine-tuning [14].

Wu et al. introduced a similar method called Chain-of-Charts
which provides LLMs with examples of questions paired with their

corresponding answers[24]. Based on a benchmark comprising over

22,000 question-answer pairs, the authors showed that this prompt-

ing technique improves the performance of multimodal LLMs in

low-level analytics tasks for CQA. Our methodology builds on the

1592

https://github.com/cginternals/webgl-operate
https://github.com/cginternals/webgl-operate

Analyzing the Sensitivity of Prompt Engineering Techniques in Natural Language Interfaces
for 2.5D Software Visualization WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

CONTEXT

You are the backbone of a visual analytics application. You use a knowledge
base to answer analytics-related questions and control part of the visual
analytics app if necessary. The analytics platform uses a treemap to visualize
hierarchical data.

Your knowledge base is software analytic data of Git repositories.
Data is stored in csv files which have the following columns:
- filename: name of the file
- loc: lines of code
- noc: number of comments (comment blocks)
- cloc: number of comment lines
- dc: comment density; ratio of comment lines to all lines
- nof: number of functions

TASKS

As you are the backbone of the visual analytics application, you mainly do two
things. You provide explanations for human users, and you control parts of the
application, mainly a treemap visualization. That we can use your responses
properly, your response for controlling the application has to be valid JSON
format. You append the json at the end of your user message as a separate
message. There should be no sign that a message contains a configuration object,
for instance never use wording like "Here is the configuration for ...". Just
use JSON for easier parsing at the end of the message.

[Explain your answer stepwise, i.e., apply the Chain-of-Thought technique.]

Here is more information about your core functionality:
1: You answer analytic related questions about the provided knowledge base and
provide reasoning about the actions you take when you control the app. Keep
your answers as brief as possible, also don’t use too much text styling.
2: You create the visual mapping of the data columns for the treemap
visualization. The treemap uses three visual attributes. The area of a bar, the
height of a bar and the color of a bar. Per default the treemap displays the
number of lines of code (loc) as area. You can choose the mapping of the other
two visual attributes based on what you think makes most sense, or on what the
user specifies. To speed up the user interaction, you never ask for confirmation
when you create a mapping. The mapping object will configure the treemap
component of the system, therefore it will be in the JSON response object. The
format is either { mapping: { height: columnName, colors: columnName } } or {
mapping: null }.
3: Whenever appropriate, you can highlight single or multiple columns. A column
represents a single file in the knowledge base. When you want to highlight a
column, you respond with the "filename" of the item in the knowledge base. So
the format is either { highlight: [filename] } or { highlight: null }.

Figure 2: Instruction Prompt of Delphi taken from Jobst et
al. [10]. In case, where the Chain-of-Thought technique is
integrated the sentence “Explain your answer stepwise, i.e.,
apply the Chain-of-Thought technique” is added at the end
of the first paragraph of the tasks section.

work of Wu et al. but focuses specifically on a single visualization

type with known data and a predefined visualization specification.

3 Prompt Sensitivity Analysis
Jobst et al. showcased the advantages of incorporating an NLI into

their 2.5D treemap visualization by employing a variety of questions.

In this study, we evaluate how the prompt influences Delphi’s

visualization literacy, defined as its “ability and skill to read and

interpret visually represented data and to extract information from

data visualizations” [11]. Throughout our experiments, we rely on

the GPT-4o model and the visualization setting shown in Figure 1.

3.1 Prompt Design
Delphi requires the visualization designer to provide an instruction

prompt. The original prompt from Jobst et al. is depicted in Figure 2.

It begins with a description of the application context and an expla-

nation of the dataset variables, which are stored as columns. The

prompt leverages the persona-adoption technique, instructing the
LLM to adopt a specific persona to guide its role [15]. Following this,

the instruction prompt outlines the tasks and details the methods

for responding to queries. These methods include providing textual

answers, modifying the visual mapping, or highlighting specific

objects. To support this, the visualization designer must explain the

available visual variables—in our case, the height and color of the

cuboids (with the area reserved for the lines of code).

Finally, the instruction prompt specifies the required output for-

mat, which is JSON. To introduce variation, we incorporate the

chain-of-thought technique into the prompt to analyze its impact.

This technique encourages the LLM to provide a step-by-step ex-

planation of its reasoning process, enabling a more structured and

transparent approach to answering questions [23]. By comparing

the results with and without this technique, we aim to evaluate its

influence on the LLM’s performance and visualization literacy.

3.2 Quantifying Delphi’s Visualization Literacy
Various methods have been developed to measure an individual’s

visualization literacy, with the most notable being the Visualiza-
tion Literacy Assessment Test (VLAT) [11] and its simplified subset,

the Mini-VLAT [16]. The VLAT consists of 52 questions in 12 two-

dimensional chart types, each question targeting a specific low-level

analytical task. Bendeck and Stasko applied the VLAT to assess the

visualization literacy of multimodal LLMs [2]. However, in our case

of a fixed visualization, the VLAT is not applicable. Additionally,

the VLAT comprises only non-visual questions that do not require

the LLM to interpret the visual mapping; instead, it focuses solely

on understanding the meaning of the data columns. In our study,

we build on the approaches of Xu and Wall [25] and Wu et al. [24],

whose evaluations encompassed ten low-level analytical tasks out-

lined in Amar et al.’s taxonomy [1]. Additionally, we include both

visual and non-visual questions to provide a more comprehensive

assessment. Overall, our questionnaire consists of 40 questions,

as detailed in Table 1. According to Hoque’s taxonomy of CQA

tasks, our questionnaire includes factual questions that are both vi-

sual and non-visual, encompassing both simple and compositional

types [9].

3.3 Results
The results of our experiment are presented in Table 1. Wemanually

input the questions into Delphi and verified the accuracy of the

answers either by fact-checking (e.g., for value retrieval) or by

subjective judgment (e.g., for clustering tasks). The answers were

marked as either correct (✓) or incorrect (✗). In some cases, the

two prompts produced different outputs that were both considered

correct (✓).

In the case of the baseline prompt, in no instance were both a

visual question and its non-visual counterpart answered incorrectly.

Question 9 was marked incorrect because its approximation of

the value was less accurate compared to question 11. Similarly,

question 19 was deemed incorrect because the answer failed to

mention the endpoint of the sorted list. For question 20, the LLM

erroneously stated that ordering based on color made no sense,

which is incorrect in our context and was correctly addressed in

question 18. Questions 23 and 24 only identified the minimum and

maximum values without providing the range, resulting in them

being marked as incorrect. Additionally, the answers to questions

1593

WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia Daniel Atzberger et al.

Table 1: In our evaluation of Delphi’s visualization literacy, we consider several questions. Each question corresponds to a
specific low-level analytic task and may or may not include a reference to the visual mapping. The answers were marked as
correct (✓) or incorrect (✗), with some cases where both prompts produced differing but correct outputs (✓).

ID Task Type Visual (V)/Non-Visual(NV) Question / Stem Baseline Chain-of-Thought

1 Retrieve Value NV “What is the number of comments of the file cornellbox.ts?” ✓ ✓
2 Retrieve Value NV “What is the number of lines of code of the file cornellbox.ts?” ✓ ✓
3 Retrieve Value V “What is the size of the base area of the cuboid representing the file cornellbox.ts?” ✓ ✓
4 Retrieve Value V “What is the height of the cuboid representing the file cornellbox.ts?” ✓ ✓

5 Filter NV “How many files have more than 400 lines of code?” ✓ ✓
6 Filter NV “How many files have a comment density larger than 10 percent?” ✓ ✓
7 Filter V “How many cuboids have a base area larger than 400?” ✓ ✓
8 Filter V “How many cuboids have a hight larger than 20?” ✓ ✓

9 Compute Derived Value NV “What is the average size of source code files?” ✗ ✗
10 Compute Derived Value NV “What is the average number of functions?” ✓ ✓
11 Compute Derived Value V “What is the average area of the bases of the cuboids?” ✓ ✗
12 Compute Derived Value V “What is the average height of the cuboids?” ✓ ✓

13 Find Extremum NV “What is the largest file?” ✓ ✓
14 Find Extremum NV “Which file has the most functions?” ✓ ✓
15 Find Extremum V “What cuboid has the largest base area?” ✓ ✓
16 Find Extremum V “What cuboid has the highest height?” ✓ ✓

17 Sort NV “Sort the files according to their lines of code in descending order.” ✓ ✗
18 Sort NV “Can you order the files according to their comment density?” ✓ ✗
19 Sort V “Sort the cuboids according to their sizes of their bases area in descending order.” ✗ ✗
20 Sort V “Can you sort the cuboids according to their color?” ✗ ✗

21 Determine Range NV “What is the range in the lines of code?” ✓ ✓
22 Determine Range NV “Describe the range of the number of functions.” ✓ ✓
23 Determine Range V “What is the range in the bases area?” ✗ ✓
24 Determine Range V “Describe the range in the height of the cuboids.” ✗ ✓

25 Characterize Distribution NV “How would you characterize the distribution of the lines of code?” ✓ ✓
26 Characterize Distribution NV “Please describe the distribution of the number of functions.” ✓ ✓
27 Characterize Distribution V “How would you characterize the sizes of the bases of the cuboids?” ✗ ✓
28 Characterize Distribution V “Please describe the distribution of height of the cuboids.” ✗ ✓

29 Find Anomalies NV “Are there anomalies in the number of lines of code among the files?” ✓ ✓
30 Find Anomalies NV “Are there files with an unusual comment density?” ✓ ✓
31 Find Anomalies V “Are there anomalies in the sizes of the base areas of the cuboids?” ✓ ✓
32 Find Anomalies V “Are there anomalies in the colors of the cuboids?” ✓ ✓

33 Cluster NV “Are there clusters within the files?” ✓ ✓
34 Cluster NV “Are there groups of files with similar characteristics?” ✓ ✓
35 Cluster V “Are there clusters within the cuboids, i.e., do their shapes seem to be similar?” ✓ ✓
36 Cluster V “Are there groups of cuboids with similar geometric characteristics?” ✓ ✓

37 Correlate NV “Is there a strong positive correlation between the size and the number of functions?” ✓ ✓
38 Correlate NV “Is there a strong positive correlation between the size and the comment density?” ✓ ✓
39 Correlate V “Is there a strong positive correlation between the base area and the height of the cuboids?” ✓ ✓
40 Correlate V “Is there a strong positive correlation between the base area and the color of the cuboids?” ✓ ✓

27 and 28 were less detailed compared to those for questions 25 and

26, leading to the same conclusion.

In cases where the Chain-of-Thought technique was applied,

questions 9 and 11 produced approximated results, similar to ques-

tion 9 when using the baseline prompt. We marked all answers for

the task sort as incorrect because the LLM failed to provide the

minimum.

For the tasks Characterize Distribution, Find Anomalies, and Clus-
ter, the two prompts led to different definitions and algorithms

applied by the LLM. In all cases, the LLM generated Python code

that was executed, with the results displayed to the user. For Char-

acterize Distribution, the LLM provided a textual explanation with

the baseline prompt, whereas it produced a highly structured output

with the Chain-of-Thought prompt. Additionally, the LLM defined

anomalies differently in the two cases: either as points differing by

2 standard deviations from the mean or by 1.5 standard deviations.

For the Cluster task, the LLM employed two distinct clustering

algorithms, resulting in different outputs.

4 Discussion
From the results of our evaluation, we derive our main findings.

However, our evaluation is subject to threats to validity.

4.1 Main Findings
Notably, the LLM demonstrated an ability to understand visual map-

pings, as seen in the Clustering task, where it referenced related

non-visual answers. However, the outputs were highly sensitive

to prompt variations, with only one additional sentence leading to

different definitions and algorithms. While the Chain-of-Thought

technique produced distinct results, it offered no consistent ad-

vantage. Overall, crafting effective instruction prompts remains a

trial-and-error process.

4.2 Threats to Validity
We identified two major threats to validity in our experiments. First,

due to repeated server connection failures, we had to restart Del-

phi multiple times and reintroduce the visual mapping. Instead of

repeating all prior questions, we resumed from the point of inter-

ruption. Since LLMs maintain context within a single chat, this

loss of query history may have influenced the results. Second, we

fixed the temperature parameter throughout our experiments. The

temperature setting controls the randomness of an LLM’s output:

lower values yield more deterministic responses, while higher val-

ues increase variability. Previous studies have shown that prompt

sensitivity can be affected by variations in this parameter [13]. By

1594

Analyzing the Sensitivity of Prompt Engineering Techniques in Natural Language Interfaces
for 2.5D Software Visualization WWW Companion ’25, April 28-May 2, 2025, Sydney, NSW, Australia

keeping the temperature constant, we reduced randomness and

focused on analyzing prompt-related sensitivity more effectively.

5 Conclusions & Future Work
Delphi combines an LLM-backed NLI with a 2.5D treemap for soft-

ware visualization. Through its NLI, users can interact with the

visualization using text, significantly enhancing its accessibility.

However, the visualization designer must provide the LLMwith con-

text in the form of an instruction prompt. This study investigates the

sensitivity of Delphi’s visualization literacy to variations in its in-

struction prompt. We posed 40 questions derived from 10 analytics

tasks, encompassing both visual and non-visual queries. To explore

the effect of different prompts, we compared the baseline instruc-

tion with a second prompt, enhanced using the Chain-of-Thought

technique. Our findings reveal that Delphi’s outputs are sensitive

to changes in the prompt. Delphi showed an understanding of the

visual mapping despite the absence of a graphical representation.

The Chain-of-Thought technique did not offer measurable benefits.

As future work, we aim to develop a comprehensive benchmark

based on the methodology used in this study to evaluate NLIs for

visualization literacy. Our work provides a foundational framework

for assessing the visualization literacy of LLMs and NLIs, contribut-

ing to the advancement of accessible and intelligent user interfaces.

Acknowledgments
This work is part of the “SPUR-OPT” project (grant 16KN113522)

funded by the Federal Ministry for Economic Affairs and Climate

Action of Germany. The work of Mariia Tytarenko was funded

by the FWF as part of the project ’Human-Centered Interactive

Adaptive Visual Approaches in High-Quality Health Information’

(A
+
CHIS; Grant No. FG 11-B).

References
[1] R. Amar, J. Eagan, and J. Stasko. 2005. Low-level components of analytic activity

in information visualization. In 2005 IEEE Symposium on Information Visualization
(INFOVIS ’05). IEEE, 111–117. https://doi.org/10.1109/INFVIS.2005.1532136

[2] Alexander Bendeck and John Stasko. 2025. An Empirical Evaluation of the GPT-4

Multimodal Language Model on Visualization Literacy Tasks. IEEE Transactions
on Visualization and Computer Graphics 31, 1 (2025), 1105–1115. https://doi.org/

10.1109/TVCG.2024.3456155

[3] Anwoy Chatterjee, H S V N S Kowndinya Renduchintala, Sumit Bhatia, and Tan-

moy Chakraborty. 2024. POSIX: A Prompt Sensitivity Index For Large Language

Models. In Findings of the Association for Computational Linguistics: EMNLP 2024.
ACL, 14550–14565. https://doi.org/10.18653/v1/2024.findings-emnlp.852

[4] Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and Yuqing Yang. 2025. VisEval: A

Benchmark for Data Visualization in the Era of Large Language Models. IEEE
Transactions on Visualization and Computer Graphics 31, 1 (2025), 1301–1311.

https://doi.org/10.1109/TVCG.2024.3456320

[5] Kiroong Choe, Chaerin Lee, Soohyun Lee, Jiwon Song, Aeri Cho, NamWook Kim,

and Jinwook Seo. 2024. Enhancing Data Literacy On-demand: LLMs as Guides for

Novices in Chart Interpretation. IEEE Transactions on Visualization and Computer
Graphics (2024), 17 pages. https://doi.org/10.1109/TVCG.2024.3413195 Early

Access.

[6] Yuan Cui, Lily W. Ge, Yiren Ding, Lane Harrison, Fumeng Yang, and Matthew

Kay. 2024. Promises and Pitfalls: Using Large Language Models to Generate

Visualization Items. IEEE Transactions on Visualization and Computer Graphics
(2024), 11 pages. https://doi.org/10.1109/TVCG.2024.3456309 Early Access.

[7] Victor Dibia. 2023. LIDA: A Tool for Automatic Generation of Grammar-Agnostic

Visualizations and Infographics using Large Language Models. In Proc. 61st
Annual Meeting of the Association for Computational Linguistics (Volume 3: System
Demonstrations). ACL, 113–126. https://doi.org/10.18653/v1/2023.acl-demo.11

[8] Stephan Diehl. 2007. Software Visualization: Visualizing the Structure, Behaviour,
and Evolution of Software. Springer Science & Business Media. https://doi.org/

10.1007/978-3-540-46505-8

[9] Enamul Hoque, Parsa Kavehzadeh, and Ahmed Masry. 2022. Chart question

answering: State of the art and future directions. EG Computer Graphics Forum
41, 3 (2022), 555–572. https://doi.org/10.1111/cgf.14573

[10] Adrian Jobst, Daniel Atzberger, Willy Scheibel, Jürgen Döllner, and Tobias

Schreck. 2025. Delphi: A Natural Language Interface for 2.5D Treemap Visual-

ization of Source Code. In Proceedings of the 20th International Joint Conference
on Computer Vision, Imaging and Computer Graphics Theory and Applications –
Volume 1: GRAPP, HUCAPP and IVAPP (IVAPP ’25). INSTICC, SciTePress. in press.

[11] Sukwon Lee, Sung-Hee Kim, and Bum Chul Kwon. 2017. VLAT: Development of

a Visualization Literacy Assessment Test. IEEE Transactions on Visualization and
Computer Graphics 23, 1 (2017), 551–560. https://doi.org/10.1109/TVCG.2016.

2598920

[12] Daniel Limberger, Willy Scheibel, Jürgen Döllner, and Matthias Trapp. 2022.

Visual Variables and Configuration of Software Maps. Springer Journal of Visual-
ization 26 (2022), 249–274. https://doi.org/10.1007/s12650-022-00868-1

[13] Manikanta Loya, Divya Sinha, and Richard Futrell. 2023. Exploring the Sensitivity

of LLMs’ Decision-Making Capabilities: Insights from Prompt Variations and

Hyperparameters. In Findings of the Association for Computational Linguistics:
EMNLP 2023. ACL, 3711–3716. https://doi.org/10.18653/v1/2023.findings-emnlp.

241

[14] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp.

2022. Fantastically Ordered Prompts and Where to Find Them: Overcoming

Few-Shot Prompt Order Sensitivity. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics. ACL, 8086–8098. https://doi.org/

10.18653/v1/2022.acl-long.556

[15] OpenAI. 2024. Prompt Engineering. url: https://platform.openai.com/docs/

guides/prompt-engineering.

[16] Saugat Pandey and Alvitta Ottley. 2023. Mini-VLAT: A Short and Effective

Measure of Visualization Literacy. EG Computer Graphics Forum 42, 3 (2023),

1–11. https://doi.org/10.1111/cgf.14809

[17] Willy Scheibel, Matthias Trapp, Daniel Limberger, and Jürgen Döllner. 2020.

A Taxonomy of Treemap Visualization Techniques. In Proc. 15th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications – Volume 3: IVAPP (IVAPP ’20). INSTICC, SciTePress, 273–280.
https://doi.org/10.5220/0009153902730280

[18] Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. 2023. Quantify-

ing Language Models’ Sensitivity to Spurious Features in Prompt Design or:

How I learned to start worrying about prompt formatting. arXiv preprint
arXiv:2310.11324 (2023).

[19] Leixian Shen, Enya Shen, Yuyu Luo, Xiaocong Yang, Xuming Hu, Xiongshuai

Zhang, Zhiwei Tai, and Jianmin Wang. 2023. Towards Natural Language Inter-

faces for Data Visualization: A Survey. IEEE Transactions on Visualization and
Computer Graphics 29, 6 (2023), 3121–3144. https://doi.org/10.1109/TVCG.2022.

3148007

[20] Yuan Tian, Weiwei Cui, Dazhen Deng, Xinjing Yi, Yurun Yang, Haidong Zhang,

and Yingcai Wu. 2024. ChartGPT: Leveraging LLMs to Generate Charts from

Abstract Natural Language. IEEE Transactions on Visualization and Computer
Graphics (2024), 15 pages. https://doi.org/10.1109/TVCG.2024.3368621 Early

Access.

[21] Pere-Pau Vázquez. 2024. Are LLMs ready for Visualization?. In 2024 IEEE 17th
Pacific Visualization Conference (PacificVis ’24). IEEE, 343–352. https://doi.org/

10.1109/PacificVis60374.2024.00049

[22] Huichen Will Wang, Mitchell Gordon, Leilani Battle, and Jeffrey Heer. 2025.

DracoGPT: Extracting Visualization Design Preferences from Large Language

Models. IEEE Transactions on Visualization and Computer Graphics 31 (2025),

710–720. https://doi.org/10.1109/TVCG.2024.3456350

[23] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,

Quoc V Le, and Denny Zhou. 2022. Chain-of-thought prompting elicits reasoning

in large language models. In Advances in Neural Information Processing Systems
(NeurIPS ’22, Vol. 35). Curran Associates, Inc., 24824–24837.

[24] Yifan Wu, Lutao Yan, Leixian Shen, Yunhai Wang, Nan Tang, and Yuyu Luo.

2024. ChartInsights: Evaluating Multimodal Large Language Models for Low-

Level Chart Question Answering. In Findings of the Association for Computational
Linguistics: EMNLP 2024. ACL, 12174–12200. https://doi.org/10.18653/v1/2024.

findings-emnlp.710

[25] Zhongzheng Xu and Emily Wall. 2024. Exploring the Capability of LLMs in

Performing Low-Level Visual Analytic Tasks on SVG Data Visualizations. arXiv
preprint arXiv:2404.19097 (2024).

[26] Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong Duan, Dahua Lin, and

Kai Chen. 2024. ProSA: Assessing and Understanding the Prompt Sensitivity of

LLMs. In Findings of the Association for Computational Linguistics: EMNLP 2024.
ACL, 1950–1976. https://doi.org/10.18653/v1/2024.findings-emnlp.108

1595

https://doi.org/10.1109/INFVIS.2005.1532136
https://doi.org/10.1109/TVCG.2024.3456155
https://doi.org/10.1109/TVCG.2024.3456155
https://doi.org/10.18653/v1/2024.findings-emnlp.852
https://doi.org/10.1109/TVCG.2024.3456320
https://doi.org/10.1109/TVCG.2024.3413195
https://doi.org/10.1109/TVCG.2024.3456309
https://doi.org/10.18653/v1/2023.acl-demo.11
https://doi.org/10.1007/978-3-540-46505-8
https://doi.org/10.1007/978-3-540-46505-8
https://doi.org/10.1111/cgf.14573
https://doi.org/10.1109/TVCG.2016.2598920
https://doi.org/10.1109/TVCG.2016.2598920
https://doi.org/10.1007/s12650-022-00868-1
https://doi.org/10.18653/v1/2023.findings-emnlp.241
https://doi.org/10.18653/v1/2023.findings-emnlp.241
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://doi.org/10.1111/cgf.14809
https://doi.org/10.5220/0009153902730280
https://doi.org/10.1109/TVCG.2022.3148007
https://doi.org/10.1109/TVCG.2022.3148007
https://doi.org/10.1109/TVCG.2024.3368621
https://doi.org/10.1109/PacificVis60374.2024.00049
https://doi.org/10.1109/PacificVis60374.2024.00049
https://doi.org/10.1109/TVCG.2024.3456350
https://doi.org/10.18653/v1/2024.findings-emnlp.710
https://doi.org/10.18653/v1/2024.findings-emnlp.710
https://doi.org/10.18653/v1/2024.findings-emnlp.108

	Abstract
	1 Introduction
	2 Related Work
	2.1 Natural Language Interfaces
	2.2 Prompt Sensitivity Analysis

	3 Prompt Sensitivity Analysis
	3.1 Prompt Design
	3.2 Quantifying Delphi's Visualization Literacy
	3.3 Results

	4 Discussion
	4.1 Main Findings
	4.2 Threats to Validity

	5 Conclusions & Future Work
	References

