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Abstract
In this paper, we propose a natural language interface visualization

framework leveraging visualization grammar to balance the flexi-

bility and stability of generated visualizations. Our system employs

a JSON schema for visualization specification and an instruction

prompt with semantically distinct sections for task context, visu-

alizations, datasets, and control mechanisms. This design enables

robust state management, live prompt adjustments, ensures clarity,

consistency, and reusability in visualization generation.

CCS Concepts
•Human-centered computing→Natural language interfaces;
Information visualization; Visualization techniques; Visualiza-
tion toolkits.
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1 Context & Challenges
Large Language Models (LLMs) are being integrated increasingly

into Visual Analytics (VA) applications and visualization systems [5].

Natural Language Interfaces (NLIs), i.e., systems that “interpret a

user’s natural language queries as input and output appropriate

visualizations” that are backed by an LLM represent a distinct class
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of these applications [10]. In particular, NLIs provide a comple-

mentary interaction mode, allowing easier access to visualizations,

especially for people with physical disabilities (e.g., color blindness

or impaired vision) or limited prior visualization experience [3, 4].

Existing NLIs often generate source code for visualizations based

on natural language input, leveraging dedicated libraries such as

D3.js or matplotlib [9, 11]. While these approaches offer flexibility,

the resulting visualizations can deviate from established design

principles, produce invalid code, or suffer from low readability due

to underspecification [2, 7, 7, 9, 12]. Complimentary approaches

restrict LLMs to modifying only specific aspects of a visualization,

thereby minimizing flexibility to ensure stability [1, 6, 8].

We propose a concept for an NLI that takes an in-between ap-

proach by leveraging visualization grammar, such as the Grammar
of Graphics, to generate visualizations based on user specifications.

Our methodology reduces flexibility by limiting the language model

to predefined mappings within the grammar, while still allowing

enough adaptability to accommodate a range of visualization needs.

2 Proposed Concept
Our system consists of two key components and is inspired by the

concept presented by Jobst et al. [6]: (1) a JSON schema derived

from a visualization grammar to specify visualizations, and (2) an

instruction prompt that provides context and guidance to the LLM.

The instruction prompt design is inspired by Choe et al. [3] but

emphasizes semantic separation of concerns where feasible. The

prompt includes several sections: (1) an Overall Task Section out-

lining the application’s purpose and the LLM’s role; (2) descriptions

of visualizations used in the application within a Visualizations
Section; (3) details about available datasets, such as attribute names

from a dataset and additional metadata not directly inferable from

the source within a Dataset Section; and (4) a Control Section
specifying communication between the LLM and the user interface,

including state information in textual form and a JSON schema.

The Visualizations and Datasets sections exemplify where sepa-

rating concerns enhances clarity. For instance, the Visualizations

section focuses solely on available visualizations, without detailing

dataset-to-visual mapping. This separation, combined with our use
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Control Section

To alter application behavior, e.g. visualization you can include control
information in json format at the end of your responses. Control information
should be included in the textual response you give in the Output section.
Include it in markdown style, so prepend "\‘\‘\‘json". Here is a json schema
of your control options and possible input:

{

" $schema " : " h t t p : / / j son −schema . org / d r a f t −07 / schema# " ,

" type " : " o b j e c t " ,

" p r o p e r t i e s " : {

" geom " : {

" type " : " s t r i n g " ,

" d e s c r i p t i o n " : " The used c h a r t type " ,

" d e f a u l t " : " p o i n t " } ,

" x " : {

" type " : " s t r i n g " ,

" d e s c r i p t i o n " : " Data v a r i a b l e mapped to h o r i z o n t a l a x i s " } ,

" y " : {

" type " : " s t r i n g " ,

" d e s c r i p t i o n " : " Data v a r i a b l e mapped to v e r t i c a l a x i s " } ,

" s e l e c t e d " : {

" type " : " a r r ay " ,

" d e s c r i p t i o n " : " I n d i c e s o f h i g h l i g h t e d o b s e r v a t i o n s " ,

" i t ems " : { " type " : " number " } ,

" d e f a u l t " : [ ] } ,

"VLAT− s co r e " : {

" type " : " number " ,

" d e s c r i p t i o n " : "VLAT s co r e o f the u se r " ,

" d e f a u l t " : 4 }

} ,

" r e q u i r e d " : [ " geom " , " x " , " y " ] ,

" a d d i t i o n a l P r o p e r t i e s " : f a l s e

}

Figure 1: Control section of an instruction prompt. The JSON
schema describes the LLM-to-application interaction. The
chart configuration syntax is inspired by ggplot2.

of grammar, ensures that even small specification changes can pro-

duce different visualizations. The Control Section serves as the core

of the NLI, defining how the LLM interacts with the user interface

while also establishing a feedback channel from the interface to the

LLM. As illustrated in Figure 1, it includes a textual explanation

and, crucially, a JSON schema. Using a schema instead of natural

language or JSON examples offers significant advantages: it enables

validation of generated responses while providing field descriptions

and default values, ensuring consistency and clarity.

Figure 2 shows how the application state evolves. Initially, the

LLM relies on the instruction prompt, making schema defaults and

UI settings crucial. The LLM updates state by including a JSON

object in its response, such as adding observation IDs to selected for

highlighting. Likewise, the UI communicates updates by embedding

changes in the same JSON format.

3 Outlook
By integrating visualization grammar and a semantically structured

instruction prompt, our approach offers a promising solution to

improve the clarity, consistency, and accessibility of LLM-assisted

visualization systems. Using well-established JSON schemas and

textual descriptions, the framework reduces the technical expertise

required by developers to create reliable natural language inter-

faces, lowering the barrier to adoption. Furthermore, the modular

User Side

LLM Side

Instruction Prompt

with Schema
Initial State Updated State

User Interaction

Inject Change in

LLM via JSON Object

LLM-generated

Config Change

Parse JSON Object

for User Interface

Figure 2: Possible state changes through user and LLM.

design simplifies the evaluation and benchmarking of V-NLI ap-

proaches, which we will focus on in the future, along with testing

the reusability of individual prompt sections.
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